AIR COOLED AOHM & AOVHM SERIES WITH HYDRAULIC MOTOR

- · Heat Removal up to 210,000 BTU/Hr.
- · Long Life Hydraulic Motor
- NPT Connections

OPTIONS:

Built-in Relief Bypass Valve SAE or BSPP Connections Corrosion Resistant Coating

Tubes - Copper Fins - Aluminum

Turbulators - Steel

Manifolds and Connection Pipes - Steel

Cabinet - Steel with Baked Enamel Finish Fan Blade - Aluminum with Steel Hub

Fan Guard - Zinc Plated Steel

Fan Adapter - Steel

RATINGS

Operating pressure - 300 psi

Test pressure - 450 psi

Operating temperature - 400°F

INSTALLATION PIPING DIAGRAMS

HOW TO ORDER

AOHM

AOHMR - Relief Bypass Included

AOVHM

AOVHMR - Relief Bypass Included

- MODEL SIZE SELECTED
- Blank No Bypass
 - 1 One Pass*
 - 2 Two Pass
- Blank NPT
 - S SAE
 - M BSPP
- Blank No Bypass
 - 30 30 PSI 60 - 60 PSI

FOOT MOUNTING BRACKETS

AOHM & AOHMR Series Only Blank - No Brackets

FB - Foot Brackets

- * Not Available in AOVHMR
- ◆ Other connection types available. Consult factory for assistance

FAN ROTATION CLOCKWISE/FACING MOTOR SHAFT

See dimensional chart for external NPT or optional internal SAE connection size.

MODEL	A	В	C	D	£	NPT F	SAE	G	H	J	K	L	M (SAE)	NET WT (LBS)
AOHM-5	11.81	14.81		7.69	11.69	J"	#16		12.94	16.81	9,19	8.31		35
AOVHM-5	11.01	14.01	16.70	7.07	11.07	1 1/2"	#24		12.7	10.01	77	0.01		59
AOHM-10	13.12	19.00	10.70	8.88	15.88]"	#16		17.12	21.00	10.50	12.50		50
AOVHM-10	10.12	17.00		0.00	15.00	1 1/2"	#24] -		21.00		.2.50		76
AOHM-15	15.75	20.38		11.50	17.25]"	#16		18.50	22.38	13.12	13.88		60
AOVHM-15	15.75	20.00				1 1/2"	#24		10.50					89
AOHM-20	18.38	23.81	17.09	14.00	20.56	1 1/4"	#20		21.81	25.81	15.75	17.19	#8	75
AOVHM-20	10.00	20.01		1 1.00	10.30	2"	#32		21101	25.01		,		108
AOHM-25	23.62	26.68		19.25	23.56	1 1/4"	#20		24.81	28.68	21.00	20.19		110
AOVHM-25	10.01	20.00	17.25	17.23	25.50	2"	#32			20.00	11.00			143
AOHM-30	27.56	31.62	16.70	23.19	28.50	1 1/4"	#20	11.00	29.75	33.62	24.94	25.12		120
AOVHM-30	27.30	01.02	16.95	20.17	10.50	2"	#32]	2		~			178
AOHM-35	30.19	33.81	16.70	25.81	30.69	1 1/4"	#20	11.00	31.94	35.81	27.56	27.31		135
AOVHM-35	30.17	50.01	17.22	23.01	35.57	2"	#32]	0	55.01		27,01	#10	220
AOHM-40	36.75	41.62	16.70	32.38	38.50	1 1/4"	#20	13.25	39.75	43.62	34.12	35.12	#8	160
AOVHM-40	30.73	11.02	17.22	UL.30	55.50	2"	#32	1 10.23	0,5		512	55.12	#10	286

NOTE: All dimensions are in inches.

NOTE: We reserve the right to make reasonable design changes without notice.

SELECTION PROCEDURE

Performance Curves are based on 50 SSU oil entering the cooler 50°F higher than the ambient air temperature used for cooling. This is referred to as a 50°F E.T.D.

Step 1. Determine the Heat Load.

Heat load may be expressed as either horsepower or BTU/Hr. To convert horsepower to BTU/Hr.:

BTU/HR = Horsepower x 2545

Step 2. Determine Entering Temperature Difference.

The entering oil temperature is generally the maximum desired oil temperature.

Entering oil temperature - Ambient air temperature = E.T.D.

Step 3. Determine the Corrected Heat Dissipation to use the curves.

Corrected Heat Dissipation = BTU/HR heat load x x viscosity correction A.

50°F FTD

Step 4. Enter curves at oil flow through cooler and curve heat dissipation. Any curve above the intersecting point will work.

NOTE: Performance curves shown are for 1 and 2 pass configuration.

EXAMPLE: 35 - 2 is AOHM or AOVHM - 35 plumbed 2 pass.

Step 5. Determine Oil Pressure Drop from Curves:

● = 5 PSI; ■ = 10 PSI; Multiply pressure drop from curve by correction factor B found in oil viscosity correction curve.

METHODS TO DETERMINE HEAT LOADS

The heat load may be determined by:

A. Hydraulic oil cooling: Assume 30% of the input horsepower will be rejected to heat. If the input horsepower is unknown, this formula may be used:

BTU/HR = (System PSI) x (GPM Flow) x 1.8 x .3

- B. Hydrostatic oil cooling: Assume 25% of the input horsepower will be rejected to heat.
- C. Automatic transmission: Assume 30% of the engine horsepower will be rejected to heat.
- D. Engine oil cooling: Assume 10% of the engine horsepower will be rejected to heat.

DESIRED RESERVOIR TEMPERATURE

Oil Temperature: Oil coolers can be selected using *entering* or *leaving* oil temperatures.

Off-Line Recirculation Cooling Loop: Desired reservoir temperature is the oil temperature *entering* the cooler.

Return Line Cooling: Desired reservoir temperature is the oil temperature *leaving* the cooler. In this case, the oil temperature change must be determined so that the actual oil *entering* temperature can be found. Calculate the oil temperature change (oil $\triangle T$) with this formula:

Oil $\triangle T = (BTU's/Hr.) / (GPM Oil Flow x 210).$

To calculate the oil *entering* temperature to the cooler, use this formula:

Oil Entering Temp. = Oil Leaving Temp + Oil $\triangle T$.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

OIL TEMPERATURE

Typical operating temperature ranges are:

Hydraulic Motor Oil 120° - 180°F
Hydrostatic Drive Oil 160° - 180°F
Engine Lube Oil 180° - 200°F
Automatic Transmission Fluid 200° - 300°F

HYDRAULIC MOTOR

MODEL	CIZE (NEW)		OIL FLOW REQUIRED (GPM)		MIN. OPERATING Pressure (PSI)		SOUND dB(A)*		MOTOR (in³/rev.) DISPLACEMENT		CFM	
SIZE	MHOA	MHYOA	AOHM	MHVOA	MHOA	MHYOA	AOHM	MHYOA	MHOA	MHVOA	AOHM	MHVOA
5							68	85			465	780
10	1725	3450	1.6	3.3	300	300	68	85		.22	669	1110
15	1723	3430	1.0	3.3	300	300	69	91	.22	.22	956	1590
20							70	91			1460	2168
25				0.4	400	500	72	81] '	.45	2160	3000
30	1140	1725	1.1	3.4	400	500	75	84		رد.	2990	4095
35				5.2	900	1000	76	89		.70	4370	5921
40							78	91		0	5450	9609

Notes: Maximum pressure is 2000 psi. Stated minimum operating pressure is at inlet port of motor, 1000 psi allowable back pressure.

^{*}Catalog db(A) sound levels are at seven (7) feet. dB(A) sound levels increase by six (6) dB(A) for halving this distance and decrease by (6) dB(A) for doubling this distance.

PERFORMANCE CURVES

AOHM SERIES

AOVHM SERIES

air cooled AOHIM/AOVHIM

BUILT-IN RELIEF BYPASS – AOHMR SERIES

ONE PASS (MEDIUM TO HIGH OIL FLOWS)

Model No.	Flow Range GPM (USA)
AOHMR - 5 - 1	2 - 80
AOHMR - 10 - 1	3 - 80
AOHMR - 15 - 1	4 - 80
AOHMR - 20 - 1	5 - 80
AOHMR - 25 - 1	6 - 100
AOHMR - 30 - 1	7 - 100
AOHMR - 35 - 1	8 - 112
AOHMR - 40 - 1	9 - 118

TWO PASS (LOW TO MEDIUM OIL FLOWS)

Model No.	Flow Range GPM (USA)
AOHMR - 5 - 2	2 - 25
AOHMR - 10 - 2	2 - 30
AOHMR - 15 - 2	2 - 40
AOHMR - 20 - 2	2 - 30
AOHMR - 25 - 2	2 - 40
AOHMR - 30 - 2	2 - 40
AOHMR - 35 - 2	3 - 40
AOHMR - 40 - 2	4 - 40

BUILT-IN RELIEF BYPASS – AOVHMR SERIES

TWO PASS (LOW TO MEDIUM OIL FLOWS)

Model No.	Flow Range GPM (USA)						
AOVHMR - 5 - 2	4 - 50						
AOVHMR - 10 - 2	4 - 60						
AOVHMR - 15 - 2	4 - 60						
AOVHMR - 20 - 2	4 - 80						
AOVHMR - 25 - 2	4 - 80						
AOVHMR - 30 - 2	4 - 80						
AOVHMR - 35 - 2	6 - 80						
AOVHMR - 40 - 2	8 - 80						

Bypass valve is available for 2 pass AOVHMR models only.

For more information or to purchase these products, please contact:

HYDROTHRIFT CORPORATION (800) 772-0493

www.hydrothrift.com sales@hydrothrift.com